
1 About the entry

This is the readme file for Linus Åkesson’s
contribution to the 2015 installment of the
Underhanded C contest.

The source code is organized into three files,
with a total of 66 lines of code: match.h,
match.c and spectral contrast.c.

The complete source code is included at the end
of this document (and, of course, as regular files
in the archive).

Also included in the archive is a driver program,
test.c, that generates raw data for the plots
used in this file and in the spoilers document.
Reading test.c too closely may thus give away
the secret.

What follows is intended as official documenta-
tion for the fissile material detector. It may or
may not be misleading.

§

2 Theory of operation

The match function compares two gamma-ray
spectra: A reference pattern and a test pattern.
Figure 1 shows a typical gamma-ray spectrum.

When comparing two materials, we are mainly
concerned with the position and relative height
of peaks. Each input spectrum is therefore pre-
processed as follows: A smoothing operation is
applied to remove most of the noise (Figure 2).
To get rid of the slanted noise floor, the first-
order differential is computed (Figure 3). The
smoothing operation is applied a second time to
obtain the final spectral fingerprint (Figure 4).

The similarity of the two fingerprints is then
determined by computing their spectral contrast
angle [1]. Each pattern is regarded as a multi-
dimensional vector. The dot product of two

Figure 1: Typical gamma-ray spectrum.

0 200 400 600 800 1000

0
50

0
10

00
15

00

Bin
C

ou
nt

normalized vectors is equal to the cosine of the
angle between them:

A

||A||
· B

||B||
= cos(θ)

The match function computes the cosine as
described above, and compares it directly to
the supplied threshold parameter. The cosine
will reach its maximum value (1.0) when the
two vectors are fully congruent, i.e. all peaks
are precisely aligned in the two samples, and
their relative sizes match perfectly.

On its own, however, this criterion is not suf-
ficient to identify a nuclear warhead as eligible
for dismantling. The reason is that the algo-
rithm compares the shape while ignoring the
overall size of the two spectra. Thus, a country
may present a warhead containing only a small
fraction of the expected fissile material, and the
test vector would still align perfectly with the
reference vector.

Therefore, a second criterion is introduced: The
total amount of gamma-ray activity in the test
pattern—defined as the sum of all bins—must
be at least as great as some given fraction of the
total amount of gamma-ray activity in the ref-
erence pattern. The same threshold parameter
is used to indicate the desired fraction.

1

Figure 2: After the first smoothing operation.

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00
12

00

Bin

C
ou

nt

Figure 3: After taking the differential.

0 200 400 600 800 1000

−
50

0
50

Bin

C
ou

nt
 d

iff
er

en
ce

Figure 4: Final spectral fingerprint.

0 200 400 600 800 1000

−
40

−
20

0
20

40

Bin

C
ou

nt
 d

iff
er

en
ce

3 Evaluation

A set of 1000 artificial materials were gener-
ated, with each material represented as a set of
peaks with randomized relative sizes. For each
material, a pair of spectra were generated, with
small random variations. The match routine
was probed using a binary search to determine
the critical threshold, i.e. the highest threshold
at which the routine considers the two gen-
erated spectra to be matching. The result is
shown as dark bars in the histogram in Figure 5.

Next, a set of 1000 pairs of artificial materials
were generated, and the critical threshold for
finding a match between spectra of the two
different materials was computed in a similar
manner. The result is shown as light bars in
the same histogram.

It follows from a visual inspection of the his-
togram that a threshold value of 0.6 should
work well in practice.

References

[1] K. X. Wan, I. Vidavsky, and M. L. Gross.
Comparing similar spectra: from similarity
index to spectral contrast angle. Journal of
the American Society for Mass Spectrome-
try, 13(1):85 – 88, 2002.

2

Figure 5: Histogram over critical thresholds for spectra of the same material (dark) and of
different materials (light).

−0.5 −0.35 −0.2 −0.05 0.1 0.22 0.36 0.5 0.62 0.76 0.9

Critical threshold

C
ou

nt

0
10

20
30

40
50

60
70

3

Complete source code

match.h
#define N_SMOOTH 16 /* Size of smoothing kernel */
typedef double float_t; /* Desired precision for floating-point vectors */

int match(float_t *test, float_t *reference, int bins, double threshold);
double spectral_contrast(float_t *a, float_t *b, int length);

match.c
#include <string.h> /* memcpy */
#include "match.h"

static double total(float_t *v, int length) {
double sum = 0;
int i;
for(i = 0; i < length; i++) sum += v[i];
return sum;

}

static void smoothen(float_t *v, int length) {
double sum;
int i, j;
for(i = 0; i < length; i++) {

sum = 0;
for(j = 0; j < N_SMOOTH && i + j < length; j++)

sum += v[i + j];
v[i] = sum / N_SMOOTH;

}
}

static void differentiate(float_t *v, int length) {
int i;
for(i = 0; i < length - 1; i++) v[i] = v[i + 1] - v[i];
v[length - 1] = 0;

}

static void preprocess(float_t *v, float_t *source, int length) {
memcpy(v, source, length * sizeof(*v));
smoothen(v, length);
differentiate(v, length);
smoothen(v, length);

}

int match(float_t *test, float_t *reference, int bins, double threshold) {
float_t t[bins], r[bins];
if(total(test, bins) < threshold * total(reference, bins)) return 0;
preprocess(t, test, bins);
preprocess(r, reference, bins);
return spectral_contrast(t, r, bins) >= threshold;

}

spectral contrast.c
#include <math.h> /* sqrt */

static double dot_product(float_t *a, float_t *b, int length) {
double sum = 0;
int i;
for(i = 0; i < length; i++) sum += a[i] * b[i];
return sum;

}

static void normalize(float_t *v, int length) {
double magnitude = sqrt(dot_product(v, v, length));
int i;
for(i = 0; i < length; i++) v[i] /= magnitude;

}

double spectral_contrast(float_t *a, float_t *b, int length) {
normalize(a, length);
normalize(b, length);
return dot_product(a, b, length);

}

4

